\qquad
\qquad

Section 5.3 Extra Practice

State the restrictions on the values for each variable.

1. Solve for x in each equation.
a) $\sqrt{x+3}=7$
b) $\sqrt{5 x}=4$
c) $3 \sqrt{5-3 x}=0$
d) $\sqrt{-2 x}=24$
2. Solve and verify.
a) $\sqrt{7 x}+1=15$
b) $\sqrt{y^{2}+1}-y=1$
c) $8-\sqrt{1+v}=5$
d) $-5=2-\sqrt{2 x+15}$
3. Solve and verify.
a) $\sqrt{4-3 m}=m$
b) $\sqrt{x^{2}-1}=2 \sqrt{x+1}$
c) $n-\sqrt{n}=4$
d) $\sqrt{3 x^{2}+2}=2 x+1$
4. Solve each radical equation.
a) $\sqrt{x+5}=\sqrt{2 x-3}$
b) $\sqrt{y^{2}-1}=2 \sqrt{y+1}$
c) $\sqrt{3 x+4}=\sqrt{x-2}$
d) $\sqrt{2 p^{2}-3}=\sqrt{5 p}$
5. Solve and check.
a) $\sqrt{w}+1=\sqrt{w+4}$
b) $\sqrt{2 x+4}-\sqrt{x}=2$
c) $\sqrt{y+12}-2=\sqrt{y}$
d) $\sqrt{x-5}-\sqrt{x+10}=-3$
6. Solve each radical equation.
a) $\sqrt{3+\sqrt{x}}=4$
b) $2=\sqrt{\sqrt{8 x}-4}$
7. John solves the equation $\sqrt{x+6}-x=4$. He determines two solutions: $x=-2$ and $x=-5$. Identify whether either of these values is extraneous.
8. The equation $t=\sqrt{\frac{d}{4.9}}$ describes the time, t, in seconds, for an object to fall from a height of d metres. Determine the original height of an object that takes 4.3 s to reach the ground. Express the answer to the nearest tenth of a metre.
